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Final Report: AM: Basic Development, Applications and Theory

I. Introduction

.,The central focus was the study of algebraic multigrid (AM), which was

in fact developed under this project. Since most of the papers previously

subitted to AFCSR included a description of A14G and the major results of the

project, only a *btief overview will be given here.

-> Conventional or geometric multigrid algorithms depend on knoledge of the

underlying geometry for a given problem (e.g., a partial differential equa-

tion). This knowledge is used to predetermine coarser grids and the attendant

operators and intergrid transfers. Although very efficient solvers can be

developed in this way, the dissemination and use of geometric irultigrid have

been impeded by the need to tailor the algorithm to each application. A

fairly general "black box" solver based on nultigrid principles would be use-

ful in overcming these difficulties and promting multigrid applications.

Algebraic multigrid uses no explicit knowledge of an underlying geometry

to produce coarser levels. In fact, only the matrix entries and a few algo-"

rithm parameters are used to determine the coarser levels and the remaining

multigrid processes. The motive is to maintain the typical multigrid

efficiency by determining coarser levels that properly reflect the errors that

relaxation cannot effectively reduce.

For certain classes of matrices (e.g., synmetric positive-type), the means

for obtaining this motive is relatively easy to describe: It can be shown

(B2) that point Gauss-Seidel for such matrices achieves (algebraic) smoothness

in the sense that the errors after just a few sweeps are "locally constant", that

is, variables that are strongly coupled via large off-diagonal matrix entries

nmst exhibit similar errors in the approximate solution. The coarsening

process may therefore use a Ritz-type variational formulation in an attempt

to approximate such errors, that is, it is enough to determine an interpolation------

process that ensures that such errors are in the range of interpolation. This

approximation property must be achieved while maintaining low complexity of ]

the resulting ovarse level problems. This can generally be acoxzplished by

p!point interpolation which is an efficient way of ensuring that each variable eel

that does not beacoe a coarse level variable is strongly dependent on approxi .- ----

mately p that are. The means for ixcplementing this process are quite opli- ---- 4

cated (B3), but the principles are straightforward. Moreover, sharp
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convergence rates can be proved in this case and in more general cases,

including block positive-type matrices such as those that arise from dis-
cretizing Stokes's equations (cf. (B2)).

The main difficulty in applying A14G to new classes of matrices is one of
5%

deteriring the sense of smoothness (of relaxed errors) for these classes.

Once this sense is determined, efficient coarse-to-fine interpolations can be

devised. Automatic ways for cor--utationally detecting the sense of smoothness

from preliminary relaxation sweps are one of the main objectives of the

proposed research. Such mthods are expected to enhance the ANG efficiency

even for classes where it is already successfully applied.

AM should not be viewed as a way to completely eliminate the need to

carefully consider each application. It will never be a conplete black box

solver in the sense that it will work efficiently over all symmetric positive
definite matrices, say. No method does. But it can become a significant -,*<

omputational tool that will significantly reduce the design effort for multi-

grid applications. It should also lead to a better understanding of the multi-

grid processes therselves and provide guidance in the coarsening process for

new applications.

AM shows mud promise. During the project, it was in fact applied to a

wide variety of essentially positive-type problems, including anisotropic and

ill-behaved diffusion equations as well as certain nonsymmetric prcblems ,
especially convection dominated diffusion equations, and some purely algebraic

problers that arise in geodesy, with extension to a broader class of problems,

applications, and software development. The following sections will briefly

discuss only the broader areas of progress made during the project.

II. Areas of Progress

The objective of this project was the systematic development and analysis

of algebraic mltigrid methods for solving partial differential boundary value

problems. This began gradually, continuing the progression from simpler

problems to more difficult ones, introducing each complexity in its turn, and

studying first each difficulty in isolation from others. (Application-

oriented nultigrid studies have too often started with too complicated a

problem and have as a result failed to realize some of the crucial algo-

rithnic features.)

-2-



1. Basic AMG Development

The basic efforts of algorithm development are categorized as follows:

a. Symmetry. The project team developed a fully automatic AWG (D3)

for treating essentially positive-type symmetric matrices (matrices with the

property that their dominant part has nonpositive off-diagonal entries and

nonnegative row sums).
Another direction of the current project, uhich is relevant even to

positive-type cases, was the study of methods for obtaining enhanced inter-

polation accuracy,, To be specific, even though an algebraic sense of snoth-

ness is known (B2, Sec. 3.5), it may be fairly crude so that the effective

order of interpolation is too low (cf. the emple in (B2, Sec. 4.7)).

Although the W-cycle rates are reasonable even for such cases, it is impor-

tant to attempt to adieve a better sense of smoothing here. Prerelaxation

methods were developed for this purpose. The basic idea of this approach is

to perform a few relaxation sweeps on several initial approximations of the

homogeneous system in order to obtain a representative set of vectors that

exhibit smoothness. These vectors can then be easily examined to determine

the comron relationships between components of smooth vectors and to provide

a basis for determining interpolation.

Another objective in the study of symmetric problems was the treatment

of the more general class of locally positive definite (B2) matrices. For

such matrices that are not essentially block positive-type, a crude sense of

smoothness can be determined frxin the explicit local form that characterizes

this class (B2, Sec 3.5). Yet this form is not always explicitly available

and, even when it is, may not be explicit for the coarser level matrices.

The sinplest example for this situation is a general M matrix where the scaling

needed to convert it to positive-type is not explicitly given. The first step -"

here was, therefore, to apply AMG to such an M-matrix, A. This was done using

a sinple prerelaxation scheme of the above type. In this case the "smoothing

relations" that the prerelaxation provided are equivalent to approximately

finding the relative scalings (i.e., the approximate ratios between the

entries of the positive diagonal matrix D for which DAD is positive-type).

This was achieved to the degree that is needed by just a few relaxation

sweeps on the homogeneous system with an initial guess related to the diagonal

of A.

-3-
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b. Nosmmty Experiments with rKonsvrrrmtric matrices focused ani
determining how far the "symmetric" version of AMG could be carried.

Basing the process entirely on the rows of the matrix, the experiments in

(Si) for singular perturbation problems showed that AMG maintains efficiency. - .

so long as the dominance of convection terms is not so large that there is K*'.
a total loss of positive-type. In typical physical problems, this means

that the (artificial) viscosity terms should be of a size that is typical in

upstream differencing.

2. Applications

It was essentia2 for both focus and relevance and for guiding algo-

rithm development that the project be driven by a specific set of increasingly

difficult but realistic application problens. AMG has thus far been studied

in the context of two and three dimensional diffusion and diffusion-convection

problems and (originally discrete) geodetic problems, but the project began a

progression into increasingly more omplicated equations. Following is a

short summary of the problens beyond the present applications that were initial

objects of study.

a. Structural Analysis. The project began to apply AM to the linear

equations and eigenvalue problem that arise in discretizing, respectively,

static and dynamic structural analysis equations. This was done by using AMG ..

as a linear solver in existing structures codes. .,..

b. Stokes Equations. Initial tests of AMC began on the syrmmetric

Stakes equations.

c. Navier-Stakes and Euler Equations. Early consideration was also .

given to applying MAG to Navier-Stokes and Euler equations.

d. Vectorization. The project has access to a Cyber 205 vector con-

puter. Pecent developments include fully vectorized codes for both a model

Poisson solver (BAI) and a 3-d diffusion equation solver (Gl) based on conven-

tional multigrid. The impressive efficiency exhibited by these oodes cannot

be expected to be fully achieved by AMG, but it was nevertheless important to

study the vectorizability of AMG processes. Initial study began by considering

the use of gecmetric information to develop logically regular grids. This was

a first step in the direction of ADC vectorization.

3. Theory

The developrent of new theoretical tools and insights proved indispensible
. %

luring the past evolution of AMG. The need for precise quantitative insights,

-4-
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realistically dependent on the various algorithmic parameters, and the fact

that the traditional local mode analysis is not applicable to general ANG,

was motivation for development of new theoretical approadies (B2), which,

incidentally, provided improved rigorous foundation even for traditional

(geometric) multigrid.

The first step will be to complete the theory for the syrmetric case, as

outlined in (B2, Sec. 1), with additional studies related to new algorithmic

developments such as the automatic calculation of smothing relations.

Initial study onsidered the extension of the symmetric theory (B2) to

nonsyn1etric matrices.
Another theoretical direction that was pursued involved the establishment

of a theory based on C - F relaxation (B3). The theory thus far does not take

into account any special ordering of the relaxation process, yet numerical

experience with AMG suggests that relaxing first on the coarse grid (C) points

folloed by that on the reraining (F) points is often more effective. Some

results for C - F relaxation were in fact achieved by viewing AMG as approxi-

mate total reduction.

Stephen F. McOormi&k, Ph.D.
Principal Investigator
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